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d Spacing betweern dipole elements.
Pel Elevation angle of incoming or'outgoing wave front.
Paz Azimuth angle of incoming or outgoing wave front.
¢ OT o, Relative phase along x axis.
‘y or y Relative phase along y axis.
M Multiplicity or number of branches stemming from each
node.
Ny Number of dipoles in sguare array.
L Number of distribution levels when Ml = N,-
DNl"NZ"'NL Location of particular dipole.
N Number of % radius in node departure angle.
k3 Order of level 1l<k<L.
g Number of bits controlling phase shifts; also
LS8 prior to truncation.
p Index integer 0, 1, 2, . . .
Np Number of phasc shifts in array.
Gy Total wire length in single cell of multiplicity M.
WM Total wire length in array of multiplicity M.
A Expensive operational block of computer.
B Less expensive operational block of computer.

GLOSSARY




INTRODUCTION

A unique dipole phased array antenna has been proposed*

which utilizes micro electronics distributed throughout the

array. The objective of this paper is to discuss the initial
signal processing and logical organization of the distributed
system. Some of the relationships between signal distribution
methods, number of components, wire lengths, inherent errors
and computation economics are deiived and their trade-offs
discussed. Although the relationships derived are applicable
to an array of arbitrary size and shape, an example of a square
4000 element array is used in the conclusion to illustrate the

application of these relationships.

* Harrington, J. V., R. H. Baker and J. C. James: "Digitally
Controlled Phased Array for Reception of Sunblazer Signals and
Solar Radar Studies,” M.I.T. Center for Space Research, TR-66-3.



1.0 POINTING EQUATIONS

Consider the vector N pointing in the direction of wave
propagation (i.e., normal to the plans wave front as shown in
Figure a-1l. Wwhen the wave frent is coincident with point dx
on the :x-axis, the distance from the wave front to the origin
is N. This distance represents (in wave lencths) the relative
phase between the point dx and the origin. This phase oxprossed

in radians is:

_ 2w (N) 2%
x = Y = —r-dx cos o (1]

¢

or in terms of the azimuth angle, Pagr and e=levation angle,

Pal (see Appendix A):

27 _ nr2d
= 3 dg €08 0, CO8 0, =

P..
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And the phase between a point on the y axis, dy, and the origin

is:

2n nv24 . -
¢y = = dy CoS Py sin Paz = — 3 COS pgq SIN o, i3}
The quantities
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are referred to as phase tapers and have the advantage that they
have no dependence on the physical quantities of the antenna

array.



2.0 DISTRIBUTION SCHEME

Figures 1A and 2A show possibia envisioned arrays while
1B and 2B show these arrays rotatad 45° to procvide reduction
in mathematical complexiiy. Eunvisioned sigrnal- paths* are
shown as a series of distribution nodes. WNote that the total
electrical distance tc each dipoie is the sane.

If each node is considered to be in the center of a cell,
the whole array can be thought of as a nested set of cells. It
is convenient to define the number of subcells contained in any
given cell as being the multiplicity, 4, of the array. M is
also the number or multiplicity cof the branches stemming from
eachh node. The total number cof dipoles in the array then is
N, = ML where L is the number of distributing points or nodes
between any dipole and the outside world; and, therefore, is

also the number of different levels of cells.

3.0 METHOD OF DISTRIBUTING PHASE CONTROL
It has been suggested that the phase imparted to each
dipole be controlled through the use of phase shifters located
at each node. Thus the phase of a particular dipole would bhe
the total phase shift accumulated by the signal as it passes
through all nodes between the receiver and the dipole.
L

¢dipole =kil

where k denctes the order of the node.

4 (61

* As suggested by R. H. Daker and staff.
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It becomes convenient at this point to assume that the
multiplicity is 4. I1If we assume the ccunfiguration in Figure
1B, then each phase shift occurs either in the x direction or
y direction with oprosing distributions from a node having
opposite phase shifts. If we define a dipole location by the
route a signal must take to reach it starting from the center
of the array (first node), then we can express directly the
phase of that dipole as a function of its location. Let us
further define the direction embarked from a particular node
as N = 3%%%E , i.e. for N=0 along positive x axis, N=1 along
positive y axis, N=2 along negative x axis, and N=3 along
negative y axis as shown in Figure 3A. Then the location of
a particular dipole can be given by a series of numbers each
of which can take on values from 0 to 3. Figure 3B gives an

example for a 64 element array.

D = D

= location of dipole in Figure 33
Nl' Nz.;. ko.oNL 2' 1' 0

The relative phase at this dipole thus equals:
L

L=k jxN, /2 - -
Re [kil 2 (e’ "k ) (o, j¢y) ] = édipole [{7A]
or
L 1-kx4i rd _jan
‘dinole =Re [ 2 2 - @ k cos Pl (cos Paz =
- k=1
j sin o)) (7B]
Ld-% L _ . _
= g..—-i-—.._d__!. cos De]_ T 2 k Re [eJ (Oaz INR/Z)] [7C]
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The above equation implies that only Paz and Pal need to
be specified (i.e. the pointing angles) tc control the phase
at any dipole in the array. This equation also shows that the
phase information supplied to each node is the same except for

a factor of Zk

depending on the cell level of the node. The
values Nk for each node are merely the departing directions and
are automatically hard-wired into each node.

Thus if the two magnitude values of the expression in
[7C] (Nk = even, N, = odd) are expressed as binary words and
the phase shifters are linear, then only these two words need
be supplied to the nodes to control the phase distribution of
the entire array. The only calculations needed for different
node levels are binary shifts (i.e. division by two). Even if
the multiplicity distribution scheme (Figure 1lA) is not used,

[7C] is still useful in that a distribution computor only needs

to solve this equation to direct the array.

4.0 QUANTIZATION

If we were using continuous phase shifters, the relative
phase of each dipole could be controlled exactly (within engi-
neering tolerances). However, economical considerations indi-
cate that quantized phase shifters might e more practical. It
is the purpose of this section to explore some of the implica-
tions and restrictions imposed through the use of quantized

phase shifters.




Let the following binary word be a typical phase shift

word of infinite resolution:

0011.010111:01001 . . . 2n(3.3643 .
A A
lst bit qth bit

) o)

where those bits to the left of the period denote a number of
"27" phase shifts and those bits to the right denote that por-
tion of the phase shift less than 2a. The ":" denotes the
point of quantization. The LSB (least significant bit) above
the quantization shall be referred to as bit g, i.e. the LSE
carries 2% x 2 ¢ phase angle.

The bits prior to the pericd can be ignored at each phase
shifter in that we are working with a modular 2% system. The
bits following ":" will be referred to as the residue.

If the desired pointing angle has a non-zero residue, then
quantization will introduce a quantizing error dependent on the
residue. The maximum nreak error at the worst case dipole due
to quantization is discussed in the following two sections in
that it is akin to a tolerance in an antenna dish and also be-
cause it can be readily calculated.

In 4.1 aud 4.2 it is assumed that the proper phase shift
word is supplied to each node and the quantization at one node

does not alter the word supplied to the other nodes.

4.1 TRUNCATION
The first and perhaps casiest form of quantization is

truncation, i.e. just ignoring the bits below the gquantization




level g. Truncation would result in the largest possible error
at any dipole approaching 27 x 2°9 x L. Normalizing this error
by the LSB, i.e. 27 x 2‘q, this maximum error approaches L

(see.Appendix B for detailed discussion).

4.2 ROUNDING OFF

Rounding off prior to truncation improves (reduces) the
peak error due to gquantization. The improvement factor approaches
2% for M=4 and is equal to 2 for all odd M or large even M (see
Appendix B). This improvement is significant enough to warrant
rounding off prior to all truncation.

A detailed discussion of the quantization errors due to
rounding off is given in Appendix B. It is worthwhile noting,
however, that the peak error for a very large array can always
be reduced by increasing M in that the effect of a reduction of
nodes more than offsets the improvement factor advantage of

M=4.

4.3 QUANTIZING THE LOOK ANGLES
If the pointing directions are quantized such that [8] is

forced to hold for any integer value of B (see [7C],
T;% cos 0.y Re [e? (paz + "Nk/z)} =29 x 2%p {8}
P=0,1'2.Q.

then the residue in the phase shift words will be zero at all

nodes and no quantization error will exist; however, a pointing



error will exist. If the loss in overall gain due to incorrect
pointing is greater than it would be due to the presence of
unfavorable residues (lack of smoothness in the phase taper
approximation), then a pointing gquantization should not be
employed to the full extent.

Figure 4 shows the most favorable (M=ND) guantized look

angles for g=4 (i.e. phase angles quantized in Z%Q (QL) incre-
16
ments). Note that even looking straight up, the worst pointing

error due to pointing quantization is 3.6 _ 2.5°, Thus even for
V2

a beam width as wide as 5°, tuis point would be 3 db down. For
M=4 there is further spread of these look angles ¢ Y2 , making
the main pointing error equal to 3.6°.

By allowing some pointing error and some quantizing error,
in the section 4.2 sense, an optimum distribution scheme can be
achieved. This optimum would quantize the look angles in smaller
increments than 2% x 2~ 3 and allow only those residues that
would contribute quantizing error to the last few nodes.

Now increasing g has a very strong effect on the improve-
ment of both types of errors. However, computation costs and
distribution costs would increase with q so that g should be
held to as small a value as is practical with respect to errors.
The procedure for calculating the smallest allowable value of
g is involved but not difficult and devends on the size of the
array. In general, a larger array means a narrower beam width,

and thus a larger value of § is necessary to keep the overall
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errors within tolerance. Therefore, the computational costs

increase at a faster rate than the array size.

5.0 ECONOMICS
In choosing a distribution system it becomes important
to consider the different cost aspects to arrive at some optimum
criterion. The factors considered here are:
1. Number of phase shifters per dipole
2. Wire length

3. Computation costs

5.1 PHASE SHIFTERS PER DIPOLE

Assuming again that the phase shifter can add both a posi-
tive phase increment and a negative phase increment, we can
proceed to calculate the number of phase shifters per dipole
as a factor of M and L (without this assumption multiply NP
by 2).

Thinking of the phase distributing method for a moment,
it is not difficult to see that the number of phase shifters

for M=even can be expressed as:

N N N - N

_ D D D D _1 M _
No ==zt tome- - - o Rl (N,y-1] [9]
and for M=odd:
N = " |M-1 + oD u-1| + o |u-1 ot [10]
o) 2 |™ 2 ‘Fﬁﬂ 2 "ﬁ? c ot 2

N
A plot of Tﬁ—gTT for some values of M is shown in Figure 5.
D
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Note that only for M=4 or M=16 ic there much added cost with
regard to phase shifters using the multiplicity distribution

approach.

5.2 WIRE LENGTH

Wire length is a real consideration in that, for such a
large number of dipoles, wire length can contrihute significantly
to the overall cost. If it is assumed that all distributions
are initiated from the geometric center of the array, then it
is possible to express the total wire needed as a function of
M and ND (see Appendix C). The results of Appendix C are shown
in Figure 6. Note that for N, = 64 a saving factor of 2% in

total wire length can be realized by setting M=4 instead of

M=64. The savings with M=4 for an arbitrarily large array is

approximately:
3
WND 0.38 NDz !
-~ 2)
Wy JZEZND ’QD ) D
For N, = 212 = 4000 this saving in total wire length is nearly

a factor of 20.
The general expression for the wire saving as a function

of M and ND is given in Appendix C.3 [C-8].

5.3 COMPUTER COSTS
A cell of arbitrary ™ can be thought of as composed of
a superposition of (M=4) subcells as shown in Fiqure 7. The

only differences between each of the M=4 suhbcells are a scale
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factor and a rotation. The computer block in Figure 8 shows

how the phase word can be computed for any one of the M=4 sub-

cells. Since a cell can be broken down into % (Ei% if M is

odd) subcells and each subcell needs two words, the total number
of phase shift words that have to be generated is %% ((EZ%LE

M In N
§~T5—ﬁ2 words for the entire array. This means

M 1n ND
2 1In M
Fortunately, block A is the more expensive of the two block

for odd M) or
that % block A's and block B's must be constructed.
types in that it contains sin and cos generators along with some
adders and multipliers. If the phase shifters are linear, then
blocks B are of low cost in that each word is related to the
output of block A by a small multiple (M%). If M is a power
of 2, then the cost is effectively zero in that the outputs
can be taken from the same word with only a difference in the
wiring. Non-linear phase shifters should be avoided unless the
increased cost of block B (of which there are many) is compen-
sated for by a saving in the cost of the phase shifters.

If a multiplicity is a power of a lower multiplicity (i.e.
16, 64, 81, 125, etc.), then a variation in the aforementioned
computer can result in considerable savings. Figure 9 illus-
trates this point. Now the outputs of blocks A can be added

to yield the phase shift words. Thus the number of A blocks

M, M -1)

(with M:ME) becomes vy (——3~— for MS odd) resulting in consider-

able saving of complexity and cost. The number of B blocks

remains unchanged. If, in addition Ms = 4, i.e. M = 4P, then
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only a single block A is needed with shifters replacing the other
A blocks (Figure 10).

It is interesting to note that even if one were to set
M=N = Mg and thus not use the multiplicity concept in the
distribution, the multiplicity concept is still very important

to the efficient realization of the computer.

6.0 SUMMARY

There are definite advantages associated with both large
multiplicities and small multiplicities. The advantages of
large multiplicities are: less quantization error (smaller
value of L), fewer phase shifters, more central control (phase
shifts more concentrated) and the advantage of fewer connections
and less electrical distance between a dipole and the receiver.
On the other hand, small multiplicities have the advantage of
less total wire length and a simpler and cheaper computer which
in turn implies easier control.

The final choice is dictated by the geometry and number
of dipoles. For example, if the array is small, wire length

ceases to be a consideration.

6.1 LET Ny = 2!2 OR 4,000 DIPOLES

The consideration of a particular example will illustrate
some of the trade offs encountered in the choice of M. For
Ny = 212, a3 good choice of parameters would be M=16 and L=3.

These choices make for a simple computor (since Mg = M where
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Ms = 4) near minimum wire length (40 percent more than M=4 but
only about I% the wire length for M=2!2), only about 15 percent
more phase shifters than optimum, and a controllable quantiza-
tion error. I would use g=4 (four bits to control phase shifter)
for the last phase shift distribution (3%-maximum error, 2,000
phase shifters); g=5 (five bits control) for the middle phase
shifter distribution (éi maximum error, 128 phase shifters) and
g>6 (six or more bit control) for the first set of 8 phase
shifters. This distribution scheme would make the total maximum
exrror due to guantization less than f% while enabling pointing

angle resolution to better than a minute of arc.
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APPENDIX A

DERIVATION OF RELATIONSHIPS BETWEEN px, p..» AND Paz’ Pal
(Figure 3a) y
From the law of cos:

N2cos? 2N cos?

N2 (sin? + cos? tan? ) = N2 + Pel _ Pel cos
Pel Pel Paz cos?p cos2p Px
az az
. - 2
cose. = % cosp_y 1 sinp cose v cosp sinZp_, ! cosp_,
az o
cosp_, 2 cosp_, az el cosp_, 2 cosp
_1 cosp (L - sinZo ) + 1 cosp_, ]
2 cosp _ az 2 cosp_; (1 - sin Pay)
= 1 cospel ) 1 COsp,, )
4+ = B4 -
2 cosp_, (cos paz) 5 T (cos pel) cosp_; cosp_,

: = °. = iy
also: COSpp cosp,, C€OS (90 paz) Cosp,y Sinp .,

Therefore, the relationships between Py?r Pyt Paoyr and Pay are:

y

cosp, = cosp_,; cosp_, [A-1]

c05py = cosp, sinp [A-2]
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FIG. A

RELATIONSHIPS BETWEEN POINTING ANGLES
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APPENDIX B

ERRORS DUE TO QUANTIZATION

As a signal passes through a node towards a dipole, its
phase is changed by either a positive or negative increment.
Since signals distributed through opposite branches are changed
by increments identical in magnitude but opposite in sign, it
is always possible to follow a signal accumulating only positive
increments on its way to a radiating dipole. The error at the
worst case dipole for any arbitrary pointing angle is therefore
just the sum of the magnitudes of the errors accumulated at each
node. Since only that portion of the pointing angle eliminated
by quantization (i.e. the residue) contributes to the error,
it is sufficient to study the error as a function of this resi-
due normalized by the quantization level.

Figure B-1A shows the relationship between the worst case
normalized dipole errcr and the normalized residue for a single
cell (L=1) and M=4 with pure truncation. Here the error is
merely the residue per se. Figure B-1B shows the resulting
error when L is extended to 2. Note that this is just a super-
position of B-~1lA and a double term denoting the additional
error contributed by a second node. The remaining B-1 figures
show what happens as L increases further. The maximum total
error is reached when the normalized residue is just short of

1 and in effect is equal to L as would be expected.
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Figure B2-A shows the effect on the error as a result of
rounding off prior to truncation for L=1. As expected, the
peak value is %. Figure B2-B shows the maximum error along
either the x-axis or y-axis for L=2. As in the case of Figure
B1-B, this figure is a superposition of Figure B2-A and a double
error term resulting from the second node. This double term
does not peak where the first error does. The peak error is
not 2 x % = 1, therefore, but rather % %.

etc. show this error for larger values of L. It is interesting

+ % = Figures B2-C,

to note that, for larger values of L, the total error approaches
% x L and not % x L as might be expected. The improvement then
along the axes resulting from rounding off prior to truncation
is a factor of 3.

The off-axis errors are larger than the on-axis errors
in that the x-axis residues and y-axis residues are uncorrelated.
The worst possible case is generated by alternating axes, i.e.
as close to the 45° diagonal as the discreteness of the array
will allow. For large L and M=4, the diagonal error approaches
0.4 x L which is a factor of 2% improvement over pure trunca-
tion.

For M=9 the worst case peak errors occur along the axis.
The total error is again found by a superposition of the errors
contributed at each node. Since all the contributions peak for
the same residue, this is the maximum peak error which an off-

axis cannot exceed. For M=25, 49 . . . the maximum peak errors
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will also occur along the axis and each node will contribute
an error of 0.5 for a total maximum peak error of 0.5L.

For M=16 very little cross correlation remains between
the error terms, and thus the diagonal maximum peak error is
almost 0.5L (actual 0.47L). For M=36, 64, 100 . . . the maxi-

mum peak errors are also along the diagonals and are effectively

OOSL.
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APPENDIX C

CALCULATION OF WIRE LENGTHS VERSUS M AND ND

Let us define the wire length in the small cell of multi-
plicity M as GMd (where d is the dipole spacing and GM is a

geometric constant depending on M). Then the contribution to

dGMND

M
and the total wire length can be expressed in a series where

the total wire length due to all of the small cells is

each term is the contribution due to those cells at a particular

level.

dGMN 1 1 1 1

- MD_ Lz, 1,3, 1,3 _l 3 -

or

de, (v - N 2)

N
M D D

Wy = : [c-2]

or normalizing by all terms which do not depend on the distri-

bution method:

- (c-3]



- 29 -
C.1l WM FOR M = ND FOR LARGE ARRAYS

An approximation to the total wire length with M=ND for
large arrays can be calculated by multiplying the densities of
dipoles, p, in a delta area weighted by the wire length to the

middle of the array and then integrating over the entire array.

ki
=5 1 1
2 N 2(4(3 cosa)
W = 8 D
Ny prdA = = | gde r2ar
d2
ND+cn
A ]
w
- 3 w
an_ ? 4 an, 2 T
= D dg __ _D de
3 cos3g 6 2 + o33 [c-4]
0
0
or
Wy = 0.382 ANy % [C-5]
D
ND -+

The significance of this result is that WN

D
NDg where, if M is held to some constant value, WM increases

linearly with Ny. Thus for large arrays a considerable savings

increases as

in wire ength and taerefore cost can »e acetmplished oy nolding

M to some constant value (i.e. 4, 9, etc.)
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Cc.2 WM FOR ARBITRARY VALUES OF M

It is of interest to compare {[C-5] with [C-2] to see how
large the array must be to make [C-5] valid. Exact calculated
values for GM/(M-M%) for M=4, 9 . . . are plott?d against M in
Figure 6, page 14, as a series of dots. GM(M—ME) as calculated

by combining [C-5]and [C-3] is shown in Figure 6 as a series

of X's and are given in ([C-6].

GM M
—31 = 0.382 [C-61]
wond wto

The approximation is quite good for all but the lowest
values of M. It is worthwhile then to substitute [C-6] into
[C-3] to obtain an equation for WM dependent entirely on known
guantities. The resulting approximation is within two percent
for M greater than 9 and within ten percent for M equal to 4
or 9.

dM(ND—Noi

W, = (0.382) _ {c-7]
" a1

Cc.3 SAVING IN WIRE LENGTH FOR M # ND
One final useful equation is a closed form expression

for the saving in wire length as a function of M compared to

M= ND‘ This eguation is found by dividing [C-5] by [C-7]:
__za__
W 1 1
oMM T ety D)% for M [c-8]
A = =W ~§-¥—I (FT or large
M M (Ny<-1)



